We propose a classical-quantum hybrid algorithm for machine learning on near-term quantum processors, which we call quantum circuit learning. A quantum circuit driven by our framework learns a given task by tuning parameters implemented on it. The iterative optimization of the parameters allows us to circumvent the high-depth circuit. Theoretical investigation shows that a quantum circuit can approximate nonlinear functions, which is further confirmed by numerical simulations. Hybridizing a low-depth quantum circuit and a classical computer for machine learning, the proposed framework paves the way toward applications of near-term quantum devices for quantum machine learning.
translated by 谷歌翻译
Recently, extensive studies on photonic reinforcement learning to accelerate the process of calculation by exploiting the physical nature of light have been conducted. Previous studies utilized quantum interference of photons to achieve collective decision-making without choice conflicts when solving the competitive multi-armed bandit problem, a fundamental example of reinforcement learning. However, the bandit problem deals with a static environment where the agent's action does not influence the reward probabilities. This study aims to extend the conventional approach to a more general multi-agent reinforcement learning targeting the grid world problem. Unlike the conventional approach, the proposed scheme deals with a dynamic environment where the reward changes because of agents' actions. A successful photonic reinforcement learning scheme requires both a photonic system that contributes to the quality of learning and a suitable algorithm. This study proposes a novel learning algorithm, discontinuous bandit Q-learning, in view of a potential photonic implementation. Here, state-action pairs in the environment are regarded as slot machines in the context of the bandit problem and an updated amount of Q-value is regarded as the reward of the bandit problem. We perform numerical simulations to validate the effectiveness of the bandit algorithm. In addition, we propose a multi-agent architecture in which agents are indirectly connected through quantum interference of light and quantum principles ensure the conflict-free property of state-action pair selections among agents. We demonstrate that multi-agent reinforcement learning can be accelerated owing to conflict avoidance among multiple agents.
translated by 谷歌翻译
Machine learning-based modeling of physical systems has experienced increased interest in recent years. Despite some impressive progress, there is still a lack of benchmarks for Scientific ML that are easy to use but still challenging and representative of a wide range of problems. We introduce PDEBench, a benchmark suite of time-dependent simulation tasks based on Partial Differential Equations (PDEs). PDEBench comprises both code and data to benchmark the performance of novel machine learning models against both classical numerical simulations and machine learning baselines. Our proposed set of benchmark problems contribute the following unique features: (1) A much wider range of PDEs compared to existing benchmarks, ranging from relatively common examples to more realistic and difficult problems; (2) much larger ready-to-use datasets compared to prior work, comprising multiple simulation runs across a larger number of initial and boundary conditions and PDE parameters; (3) more extensible source codes with user-friendly APIs for data generation and baseline results with popular machine learning models (FNO, U-Net, PINN, Gradient-Based Inverse Method). PDEBench allows researchers to extend the benchmark freely for their own purposes using a standardized API and to compare the performance of new models to existing baseline methods. We also propose new evaluation metrics with the aim to provide a more holistic understanding of learning methods in the context of Scientific ML. With those metrics we identify tasks which are challenging for recent ML methods and propose these tasks as future challenges for the community. The code is available at https://github.com/pdebench/PDEBench.
translated by 谷歌翻译
我们提出了一种轻巧,准确的方法,用于检测视频中的异常情况。现有方法使用多个实体学习(MIL)来确定视频每个段的正常/异常状态。最近的成功研​​究认为,学习细分市场之间的时间关系很重要,以达到高精度,而不是只关注单个细分市场。因此,我们分析了近年来成功的现有方法,并发现同时学习所有细分市场确实很重要,但其中的时间顺序与实现高准确性无关。基于这一发现,我们不使用MIL框架,而是提出具有自发机制的轻质模型,以自动提取对于确定所有输入段正常/异常非常重要的特征。结果,我们的神经网络模型具有现有方法的参数数量的1.3%。我们在三个基准数据集(UCF-Crime,Shanghaitech和XD-Violence)上评估了方法的帧级检测准确性,并证明我们的方法可以比最新方法实现可比或更好的准确性。
translated by 谷歌翻译
研究过程包括许多决定,例如如何应有资格以及在何处发表论文。在本文中,我们介绍了一个一般框架,以调查此类决策的影响。研究效果的主要困难是我们需要了解反事实结果,而实际上并非现实。我们框架的主要见解是灵感来自现有的反事实分析,其中研究人员将双胞胎视为反事实单位。提出的框架将一对彼此引用为双胞胎的论文。这些论文往往是平行的作品,在类似的主题和类似社区中。我们调查了采用不同决策的双论文,观察这些研究带来的研究影响的进展,并通过这些研究的影响来估算决策的影响。我们发布了我们的代码和数据,我们认为由于数据集缺乏反事实研究,因此这是非常有益的。
translated by 谷歌翻译
三维(3D)医学图像的产生可能具有巨大的应用潜力,因为它考虑了3D解剖结构。但是,有两个问题可以防止有效培训3D医疗生成模型:(1)3D医学图像的获取和注释非常昂贵,导致培训图像不足,(2)大量参数是参与3D卷积。为了解决这两个问题,我们提出了一种名为3D Split&Shuffle-Gan的新型GAN模型。为了解决3D数据稀缺问题,我们首先使用丰富的图像切片预先培训二维(2D)GAN模型,并夸大2D卷积权重以改善3D GAN的初始化。为GAN模型的生成器和鉴别器提出了新型的3D网络体系结构,以显着减少参数的数量,同时保持图像生成的质量。研究了许多体重通胀策略和参数有效的3D架构。对心脏(Stanford Aimi冠状动脉钙)和大脑(阿尔茨海默氏病神经成像计划)的实验表明,所提出的方法会导致改善的3D图像产生质量,参数较少。
translated by 谷歌翻译
集体决策对于最近的信息和通信技术至关重要。在我们以前的研究中,我们在数学上得出了无冲突的联合决策,最佳地满足了玩家的概率偏好概况。但是,关于最佳联合决策方法存在两个问题。首先,随着选择的数量的增加,计算最佳关节选择概率矩阵爆炸的计算成本。其次,要得出最佳的关节选择概率矩阵,所有玩家都必须披露其概率偏好。现在,值得注意的是,不一定需要对关节概率分布的明确计算;集体决策的必要条件是抽样。这项研究研究了几种抽样方法,这些方法会融合到满足玩家偏好的启发式关节选择概率矩阵。我们表明,它们可以大大减少上述计算成本和机密性问题。我们分析了每种采样方法的概率分布,以及所需的计算成本和保密性。特别是,我们通过光子的量子干扰引入了两种无冲突的关节抽样方法。第一个系统允许玩家隐藏自己的选择,同时在玩家具有相同的偏好时几乎完美地满足了玩家的喜好。第二个系统,其物理性质取代了昂贵的计算成本,它也掩盖了他们的选择,因为他们拥有可信赖的第三方。
translated by 谷歌翻译
我们提出了一个框架,该框架会自动将不可缩放的GNN转换为基于预典型的GNN,该GNN对于大型图表有效且可扩展。我们框架的优势是两倍。1)它通过将局部特征聚合与其图形卷积中的重量学习分开,2)通过将其边缘分解为小型图形,将其有效地在GPU上进行了预先执行,将各种局部特征聚合与重量学习分开,将各种局部特征聚合从重量学习中分离出来,从而使各种不可估计的GNN转换为大规模图表。和平衡的集合。通过大规模图的广泛实验,我们证明了转化的GNN在训练时间内的运行速度比现有的GNN更快,同时实现了最先进的GNN的竞争精度。因此,我们的转型框架为可伸缩GNN的未来研究提供了简单有效的基础。
translated by 谷歌翻译
自我监督学习的最新发展使我们有可能进一步减少人类干预的多步管道中的干预,其中重点围绕着特定感兴趣的对象而发展。在本文中,焦点在组织病理学图像中的细胞核中放置。特别是,我们旨在以无监督的方式提取蜂窝信息,以完成下游任务。随着核以各种尺寸表现出来,我们提出了一个新的依赖量表卷积层来绕过调整核时尺寸的问题。在三个核数据集上,我们基准了以下方法:手工制作的,预先训练的重新系统,有监督的重新系统和自我监督的特征。我们表明,所提出的卷积层提高了性能,并且与Barlows-Twins结合使用,与低样本设置中的监督范式相比,该层可以更好地编码核编码,并且胜过所有其他建议的无监督方法。此外,我们将现有的TNBC数据集扩展到合并核类别的注释,以丰富和公开释放一个小样本设置数据集以进行核分割和分类。
translated by 谷歌翻译
最近已将基于学习的THZ多层成像用于非接触式三维(3D)定位和编码。我们通过实验验证,展示了新兴量子机学习(QML)框架的概念验证演示,以应对深度变化,阴影效应和双面内容识别。
translated by 谷歌翻译